

Latest Technologies and Systems for Handling and Utilization of waste

to conserve resources.....

Conserve Resources

Conserve Resources

"Triboelectrostatic Separators for Mineral and Fly Ash industries"

Innovative Technologies *Conserve Resources*

Flyash Beneficiation

Dry Separation of Unburnt Carbon to enhance Flyash quality

Limestone Beneficiation

Dry Separation of Silica / Quartz to enhance Limestone quality

Beneficiation Process Benefits

Beneficiation Process *Commercial Application*

	Proven Outcomes / Successful Installation					
<u>(</u>	<u>Calcium Carbonate</u>	<u>Talc</u>	<u>Barite</u>			
Feed	• 9.5% SiO ₂	 58% Talc 42% Magnesite 	 200,000 TPY 82%BaSO4 3.78 (SG) 	Canada 2 units India*		
Results	 < 1% SiO₂ 89% CaCO₃ Recovery Improved Brightness 	 95% Talc 77% Recovery 88% Talc 82% Recovery 	 92% BaSO4 4.21 SG 74% Recovery 	1 unit Ausrtia 1 unit United State 1 unit		

> Aspect

Separation of Unburnt Carbon from flyash

> Impact

Separated **Carbon for fuel value** Improved usage of **processed ash in Cement and other application**

Sustainable Control

Usage of **innovative technologies** to enhance the absorption of solid waste in Cement application.

Beneficiation Process *Outline – Limestone Beneficiation*

> Aspect

Reduction of Silica from limestone

> Impact

Improved usage of highgrade limestone in Cement rawmix & other application Replacement of imported highgrade limestone & reduction of additives

Sustainable Control

Usage of **innovative technologies** to enhance the absorption of solid waste in Cement application.

Beneficiation Process Operating Principle

Triboelectrostatic Separators for Dry Separation of Unburnt Carbon to enhance Flyash quality / of Quartz to enhance Limestone quality

Differential charging between materials, produced by surface contact known as triboelectric charging,

Material with highest affinity for electron becomes Negatively charged, while other becomes positively charged.

Counter current flow of separating particles and continual triboelectric charging by Carbon-Mineral collisions provides for multi stage separation and results in excellent purity and recovery in a single pass unit.

Beneficiation Process Operating Steps - Flyash Beneficiation

Step-1

Flyash/powdered subgrade limestone is fed into a thin gap between parallel planar electrodes,

Step-2

Unburned **carbon** particles/ Quartz particles in ash take on **positive charge** and **mineral** take on **negative charge** through particle-to-particle contact,

> Step-3

Charged particles are attracted to electrode plate of opposite charge,

Step-4

High speed open mesh belt moves differently charged particles in opposite directions.

Beneficiation Process

Separator Schematic - Flyash Beneficiation

Smidth

Beneficiation Process *Product Quality - Flyash Beneficiation*

One Source

Smidth

Beneficiation Process *Plant Layout - Flyash Beneficiation*

Beneficiation Process Foot print & Layout

Beneficiation Process Processed Quantity - Flyash Beneficiation

Plant	Location	Country	Separators	Comission Date
New England Power	Salem, MA		1	1995/2006
Duke Energy	Roxboro, NC		2	1997
Talen Energy	Brandon Shores, MD		2	1999/2005
Scottish Power	Longannet, Scotland		1	2002
Jacksonville Electric SJRPP	Jacksonville, FL		2	2003
SMEPA	Morrow, MS		1	2004
NB Power	Belledune, NB	-	1	2005
RWE	Didcot, England		1	2005/2013
Talen Energy	Brunner Island, PA		2	2007
TECO	Big Bend, FL		3	2008
RWE	Aberthaw, Wales		1	2008
EDF Energy	W. Burton, England		1`	2008
ZGP	Janikowo, Poland		1	2011
KOSEP	Yong Heung 5 & 6	**	1	2014
ТВА	Poland		1	2016
ZSPS - Siekerki	Poland		1	2016

Beneficiation Process Electrostatic Mineral Separation Experience

Barite – Silicates Talc – Magnesite Calcite – Quartz Feldspar – Quartz Potash – Halite Carbon – Aluminosilicates \checkmark \checkmark Wollastonite – Quartz Zircon – Rutile-Ilmenite Magnesite - Quartz Iron Oxide – Silica Phosphate – Silica \checkmark Aluminosilicate – Flyash Beryl – Quartz Fluorite – Silica Fluorite – Barite – Calcite Brucite – Quartz

Beneficiation Process *Testing Application*

A. Concept of Feasibility Test:

Evaluation of plant specific material for the separator;

- Potential for differential charging (tribocharging properties);
- Moisture
- Particle size distribution;
- Nature (formation);
- Chemistry, Minerology,

If Potential Exists!!!!!

B. Concept of Pilot Testing

Evaluation of plant specific material for the separation system;

- Operating parameters
- Feed conditions
- Feed point
- Feed rate
- · Feed relative humidity
- Belt speed
- Electrode gap

Beneficiation Process *Pilot testing*

- Separator capacity is a function of the width of the electrode area,
- Pilot plant separator **length & configuration** is same for **commercial sized separators**, But width is $\sim 1/7$ a commercial M42 (42 inch electrode width) separator.

Beneficiation Process *Pilot testing*

Parameter	Units	Range of Possible Values
Electrode Polarity	Top electrode charge	Positive and Negative
Electrode Charge	kV	0 - 10
Feed Rate (Pilot Scale)	Short tons / hour (metric tons / hr)	<8 (7.3) ¹
Sample Relative Humidity	% RH	<1% ->70% ²
Belt Speed	Feet / Second (m/s)	10 - 60 (3.0 - 18.3)
Feed Point	•	1, 2 & 3
Electrode Gap	Inches (mm)	$0.350 - 0.700 (8.9 - 17.8)^3$
Sample Temperature	°F (°C)	68 (Ambient) – 160 (20 – 70)

1 Dependent on material density, particle size distribution and other factors.

2 Dependent on material

3 Dependent on material

Conserve Resources

"Effective Utilization of Industrial Waste"

- > Rawmix
- > Fuelmix

Industrial Waste – Rawmix *Conserve Resources*

Suitability must be checked before use..

Industrial Waste – Rawmix Conserve Resources

	Material	~ Content	Туре
	Waste Hydrated lime - Sugar/Acetylene plant	CaO = 50-70%	Calcareous
	Sugar Sludge - Sugar plant	CaO = 40-45%	Calcareous
	Calcined lime – Soda ash plant	CaO = 40-45%	Calcareous
	Lime sludge - Calcium carbide plant	CaO = 60 - 65%	Calcareous
	Waste slag - Steel/Phosphorous/Alumina plant	CaO= 30-40% SiO ₂ = 30-40%	Calcareous Siliceous
	Flue dust - Steel plant	Fe ₂ O ₃ = 40-50%	Ferruginous
	Mill scale – Metal extrusion plant	Fe ₂ O ₃ = 60-90%	Ferruginous
	Red Mud – Alumina plant	$AI_2O_3 = 15-25\%$ $Fe_2O_3 = 45-85\%$	Argillaceous Ferruginous
	Fluoride Waste - Alumina plant	F = 12-20%	As Mineralizer
	Waste Bottom ash – Thermal power plant	SiO ₂ =50-60% Al ₂ O ₃ = 20-30%	Siliceous Argillaceous

Industrial Waste – Fuelmix Conserve Resources

Suitability must be checked before use!!!

Industrial Waste – Fuelmix *Conserve Resources*

Industrial Waste – Fuelmix *Conserve Resources*

- Produced by drying & briquetting
 - Chopped wood
 - Agricultural waste
 - Bio mass.
- Better heat value (~4000Cal/g)
- Cheaper than coal and wood
- Consistent quality
- Low-level of emission
- No moisture contents
- High volatile matter
- Low ash content

Industrial Waste *FLS – Contribution*

Case Studies Alkali Bypass Dust **Wastes of Paper Plant Wastes of Carbide plant Wastes of Alumina Plant** Waste of Soda ash plant Waste of mines

E veryone A chieves M ore

ogether

Operational Support Services

Contact: E-mail: rajiv.sadavarti@flsmidth.com Direct +91 44 4748 1332 · Mobile +91 87544 98272 · Fax +91 44 2747 0301

> E-mail: alka.mishra@flsmidth.com Direct +91 44 4748 3464 · Mobile +91 87545 75186 · Fax +91 44 2747 0301

